Municipal Climate Adaptation: A Report for Kansas City, Missouri
Table of Contents

Climate Change and Cities
1.1 Introduction ..1
1.2 Project Goals ..1

Methods
2.1 Data Sources ..2
2.2 Climate Thresholds ..2

Historical Climate Trends - Statewide
3.1 Missouri Temperature Trends ..3
3.2 Missouri Precipitation Trends ..4

Historical Climate Trends - Local
4.1 General Climate of Kansas City ...5
4.2 Kansas City Temperature Trends ..6
4.3 Kansas City Precipitation Trends ..7
4.4 Kansas City Climate Extremes ..8
4.5 Summary Tables ...9

Future Climate Projections ..10

Implications ...11

Resources ..12

References ...13
1.1 Introduction

The Midwest and Great Plains are no strangers to extreme weather and climate events. Each year, events such as thunderstorms, tornadoes, and blizzards impact the local economy, infrastructure, and the safety and well-being of the people living in affected communities. Recent events, such as the back-to-back flooding and drought years of 2011 and 2012 or the recent increase in urban flash flooding due to extreme rainfall events, have left communities in a position of responding to the immediate needs of public safety, while rebuilding infrastructure - often with an eye to the future.

In light of these events, city leaders are increasingly considering climate data and information as a guide for their comprehensive plans. Changes to temperature, precipitation, and the frequency of extreme events in this region are already apparent; however, many of the impacts due to the changing climate are yet to be realized as the rate of future changes generally exceeds that of historical trends. Pinpointing and understanding how municipal-specific climate thresholds have changed historically and how these may change in the future is an important part of the process of preparing and planning for urban life under a changing climate.

1.2 Project Goals

This preliminary report is part of a larger effort to increase the capacity for municipal climate adaptation planning in the lower Missouri River Basin states (Iowa, Kansas, Missouri, and Nebraska). The goal of this project is to develop a process for incorporating climate information into long-term municipal planning strategies. By utilizing a combination of physical and social science approaches, the project aims to accomplish three objectives: 1) document thresholds associated with climate extremes in the municipal water resources sector; 2) develop municipal-specific climate information for use in planning; and 3) develop a methodology by which this information may be shared and replicated across multiple sectors. This effort builds on previous work with the Heartland Sustainability Directors Network, which is a regional subgroup of the Urban Sustainability Directors Network (http://usdn.org/uploads/cms/documents/climate_in_the_heartland_report.pdf).

Project partners include the High Plains Regional Climate Center, the Nebraska State Climate Office, the University of Nebraska Public Policy Center, the University of Nebraska-Lincoln Community and Regional Planning Program, and the City of Lincoln.

Funding is provided by the National Oceanic and Atmospheric Administration's Sectoral Applications Research Program (NA16OAR4310123).
2.1 Data Sources

All historical climate data used in this report originated from the National Oceanic and Atmospheric Administration’s National Centers for Environmental Information (NCEI). Although this report is intended to be used on the local level, statewide and regional data analyses were included to help to put the local trends into context.

For each individual location, the last 50 years (1967-2016) worth of data were used in the analyses to allow for quick comparisons between cities. The only exceptions were Kansas City, MO and Lincoln, NE, which used 44 years (1973-2016). These data are a part of NCEI’s Global Historical Climatology Network - Daily dataset and were obtained from the Applied Climate Information System. Any season with greater than 9 missing days and any year with greater than 36 missing days were not used in the analyses.

For statewide and regional data, the entire period of record (1895-2016) was used. These data were obtained from NCEI’s Climate at a Glance tool. Future projections of climate conditions were summarized from the multi-agency sponsored National Climate Assessment. Links to all climate data used in the report, along with other available resources, are located on page 12.

2.2 Climate Thresholds

The following thresholds were used to generate the contents of this report. The table was modeled after Anderson et al. 2015, which was co-developed by sustainability directors and climatologists during a pilot project funded by the Urban Sustainability Directors Network.

<table>
<thead>
<tr>
<th>Municipal Concern</th>
<th>Climate Thresholds</th>
<th>Climate Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>General climate conditions</td>
<td>Average, maximum, and minimum temperatures</td>
<td>Annual and Seasonal Temperature</td>
</tr>
<tr>
<td>General climate conditions</td>
<td>Average rainfall</td>
<td>Annual and Seasonal Precipitation</td>
</tr>
<tr>
<td>General climate conditions</td>
<td>Average snowfall</td>
<td>Annual and Seasonal Snowfall</td>
</tr>
<tr>
<td>Parks and recreation; employees working outdoors; insect vectors</td>
<td>Dates when minimum temperature is less than 32°F</td>
<td>Last Spring and First Fall Frosts</td>
</tr>
<tr>
<td>Energy demand; public health</td>
<td>Average heating degree days and cooling degree days</td>
<td>Annual and Seasonal Heating Degree Days and Cooling Degree Days</td>
</tr>
<tr>
<td>Energy demand; public health</td>
<td>Temperatures over the hottest and coldest 3-day times period each year</td>
<td>Heat Waves and Cold Waves</td>
</tr>
<tr>
<td>Stormwater management; floodplain planning; emergency response; infrastructure design</td>
<td>Days with rainfall ≥ 1.25 inches</td>
<td>Heavy Rainfall</td>
</tr>
<tr>
<td></td>
<td>Days with rainfall ≥ 4.00 inches</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amount of rainfall in wettest day</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amount of rainfall in wettest 5-day period</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amount of rainfall in wettest 15-day period</td>
<td></td>
</tr>
<tr>
<td>Snow and ice management; public safety; electricity and phone service outages</td>
<td>Days with snowfall ≥ 3.0 inches</td>
<td>Snowstorms</td>
</tr>
<tr>
<td></td>
<td>Days with snowfall ≥ 6.0 inches</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Days with snowfall ≥ 12.0 inches</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amount of snowfall in heaviest 3-day period</td>
<td></td>
</tr>
</tbody>
</table>
3.1 Missouri Temperature Trends

Statewide temperature records for Missouri date back to 1895, resulting in well over 100 years worth of observations. A wide annual temperature range is a feature of Missouri’s climate, with hot summers and cold winters. There is generally a north to south temperature gradient across the state, with the warmest weather occurring in the bootheel and the coolest along the Iowa border.

The trend in average annual temperature for Missouri shows a small increase of 0.8°F over the 122-year period. There is high year-to-year variability in the record, with significant warmth during the 1930’s Dust Bowl era, and generally warm conditions over the past couple of decades. Like other states in the region, 2012 was the warmest year on record for Missouri. Two other years in the state’s recent history join 2012 in the top ten warmest years on record, including 2006 and 2016.

When broken down, the warming trend for Missouri is greater for minimum temperatures (1.4°F) than for maximum temperatures (0.1°F). This is similar to regional and national trends showing minimum temperatures increasing at a much higher rate than maximum temperatures. An increase in atmospheric moisture is one explanation for this difference, as this can impact nighttime low temperatures much more than daytime high temperatures.

On a seasonal basis, winter (1.6°F) and spring (1.3°F) trends indicate the strongest warming, while summer and autumn trends show no change.
3.2 Missouri Precipitation Trends

Statewide precipitation records for Missouri also date back to 1895, resulting in over 100 years worth of observations. Although not as extreme as areas to the west, Missouri’s precipitation does vary seasonally, with a minimum in the winter and a maximum in the spring and summer. Generally, precipitation decreases across the state from southeast to northwest, with areas of the bootheel receiving nearly 50 inches of precipitation each year on average and northwestern areas receiving less than 40 inches.

Over the 122-year time period, Missouri’s average annual precipitation has increased by about 7%. Like other areas of the region, there is variability over this time, with drought periods of the 1930s and 1950s/1960s standing out in the record. The past couple of decades have been fairly wet in comparison and, most recently, three of the top ten wettest years on record have occurred, including 2008, 2009, and 2015.

While there has been an overall increase in annual precipitation for the state, there are differences across the seasons. Trends show substantial increases in the spring (11%) and autumn (15%), but only small changes in the winter (3%). On the other hand, summer precipitation trends are negligible, with only a 1% decrease. These seasonal precipitation trends, especially the large increase in spring-time precipitation, are consistent with other locations in the Midwest region, and these trends are expected to continue into the future (Pryor et al. 2014).

Regional Precipitation Trends

A distinguishing feature of the region is the east-west precipitation gradient in which annual average precipitation totals range from 50 inches in southeastern Missouri to less than 20 inches in the panhandle of Nebraska.

There tends to be high year-to-year variability in precipitation for much of the region; however, over the 122-year period, there has been a 10% increase in average annual precipitation. This increase varies across the region, with a low of 6% in Nebraska to a high of 15% in Iowa. On a seasonal basis, there is variability from state to state, with both increases and decreases in precipitation. On the whole, the strongest trends were in spring (16% increase), while the weakest trends were in winter (4% increase).
Historical Climate Trends - Local

4.1 General Climate of Kansas City

The weather station at the Kansas City International Airport, located about fifteen miles to the northwest of downtown Kansas City, was selected for this report due to its nearly continuous 44-year record. Daily measurements of temperature, precipitation, and snowfall have been taken at this location since October 1, 1972.

Kansas City's climate is considered to be humid continental with hot summers, which is characterized by large differences in temperatures throughout the year due to its interior location far from the moderating effects of the oceans. Kansas City experiences all four seasons and there can be high variability in temperature and precipitation. The hottest time of the year is July, when average high temperatures peak at 88°F, while the coldest time of the year occurs in January with average low temperatures dipping to 20°F. The wettest time of the year is the summer (June, July, August), with precipitation totals averaging 13.57 inches, while the driest time of the year is the winter (December, January, February) with only 4.06 inches (liquid equivalent*), although this amount is much higher than other locations to the north and west. Much of the precipitation in the winter falls as snow, with an average of 14.8 inches. Winds are predominantly from the north/northwest and the south/southeast. Winds from the north bring cold, dry air, while winds from the south bring warm, moist air. Kansas City's location between these contrasting air masses often puts it at risk for severe thunderstorms, which can produce tornadoes, high winds, hail, and flooding. The graph below shows the average climate conditions for Kansas City.

*Winter precipitation in Kansas City is a combination of rain and the liquid equivalent precipitation of snow, i.e. the amount of liquid that would have fallen had the precipitation been rain instead of snow.
4.2 Kansas City Temperature Trends

Temperature Trends Vary by Season
Kansas City’s average annual temperature has increased by 2.2°F over the past 44 years. Each season shows a warming trend, with winter exhibiting the largest increase (4.0°F). Both maximum and minimum temperatures have increased; however, unlike neighboring areas, maximums have outpaced minimums. Seasonal trends show that although there has been little change to maximum temperatures in the summer, there has been an increase in minimum temperatures. This is important because fewer cooler nights in the summer can have serious public health implications, as heat is the leading cause of weather-related deaths in the U.S. (Peterson et al. 2013).

Heat Waves and Cold Waves
A look at multi-day heat and cold wave events shows that there has been no change in the overall severity of heat waves, but a substantial decrease in the intensity of cold waves. For example, the coldest 3-day period of each year has decreased by about 10°F.

Future projections already correspond to some recent observed changes in temperature and these trends are expected to continue and accelerate.

Over the past 44 years, Kansas City’s average annual temperature has increased by 2.2°F. It has been 20 years since any year has dipped below the 10th percentile.
Precipitation Trends Vary by Season
Trends in Kansas City’s annual precipitation have been negligible (1% increase); however, there have been noteworthy differences from season to season. Over the past 44 years, summer precipitation has increased by 22%, while autumn precipitation has decreased by 21%. The spring and winter seasons exhibited the smallest changes, with a slight decrease in the spring (3%) and a slight increase in the winter (2%).

Increased Frequency of Heavy Rainfall Events
Along with the substantial increase in summertime precipitation, there has been nearly a 2-day increase in the number of days with heavy rainfall (at least 1.25 inches) for the season. This increase in heavy rainfall events in the summer could signal an increase in the potential for flash flooding events. Unlike many of its Midwestern counterparts, however, there has not been an increase in the intensity of heavy rainfall events, including single-day and multi-day events.

Future projections indicate that winter and spring precipitation could increase, while summer precipitation could decline. An increase in heavy rain events is also expected.
4.4 Kansas City Climate Extremes

Average temperature and total precipitation are helpful for understanding general conditions; however, these do not demonstrate the wide range of conditions that can be experienced at a location. This range of conditions is especially important for a place like Kansas City because 1) extremes are common in the continental type of climate experienced there and 2) extremes are impactful to people and infrastructure. Extremes in both temperature and precipitation are becoming more common, and those occurring in succession make responding to and preparing for these events quite difficult. For instance, in many recent years, temperature and precipitation data at the annual, seasonal, and monthly scales have ranked in the top ten warmest/coldest as well as the top ten wettest/driest. Extremes data presented here include stations from around the Kansas City area, beginning in 1888.

Temperature Extremes

It has been a temperature roller coaster ride over the past several years in Kansas City. Two of the top ten warmest years (2006 and 2012) as well as two of the top ten coldest years (2008 and 2014) have all occurred recently. Despite these extremes, the number of days at or above 95°F or 100°F has decreased slightly.

Precipitation Extremes

Throughout Kansas City’s history, there has been a wide range in precipitation totals. The wettest year on record, 1961, received 60.25 inches, while the driest year on record, 1953, received only 20.93 inches. Many recent extremes have been observed seasonally. In the summer, for instance, three recent years have ranked in the top ten wettest years on record (2001, 2005, and 2009), while two years have ranked in the top ten driest (2002 and 2012). Extremes on either end of the spectrum have resulted in economic losses due to flooding and drought.

Recent Extremes - Top 10 Warmest/Coolest Years on Record

In Kansas City, high year-to-year variability in temperatures has occurred recently, with several years ranking as some of the warmest or coolest on record.
Historical Climate Trends - Local

4.5 Summary Tables

For quick reference, the following tables show a summary of recent changes in seasonal climate conditions and damaging events in Kansas City. All trends cover the last 44-year time period of 1973-2016.

Seasons are defined as follows: Spring (March, April, May), Summer (June, July August), Autumn (September, October, November), and Winter (December, January, February).

<table>
<thead>
<tr>
<th>Season</th>
<th>Recent Changes in Seasonal Weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spring</td>
<td>Warmer, Drier springs</td>
</tr>
<tr>
<td></td>
<td>Earlier last frosts</td>
</tr>
<tr>
<td>Summer</td>
<td>Warmer, Wetter summers</td>
</tr>
<tr>
<td></td>
<td>Warmer nights; More Cooling Degree Days</td>
</tr>
<tr>
<td>Autumn</td>
<td>Warmer, Drier autumns</td>
</tr>
<tr>
<td></td>
<td>Later first frosts</td>
</tr>
<tr>
<td>Winter</td>
<td>Warmer, Snowier winters</td>
</tr>
<tr>
<td></td>
<td>Fewer Heating Degree Days</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Damaging Event</th>
<th>Recent Changes in Damaging Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Waves</td>
<td>No change to overall intensity of heat waves</td>
</tr>
<tr>
<td></td>
<td>3-day: Higher minimum temperatures</td>
</tr>
<tr>
<td></td>
<td>Little change to average and maximum temperatures</td>
</tr>
<tr>
<td>Cold Waves</td>
<td>Decreased intensity of cold waves</td>
</tr>
<tr>
<td></td>
<td>3-day: Higher average, maximum, and minimum temperatures</td>
</tr>
<tr>
<td>Heavy Rainfall</td>
<td>Daily: 35% decrease in wettest 1-day period per year</td>
</tr>
<tr>
<td></td>
<td>5-day: 24% decrease in wettest 5-day period per year</td>
</tr>
<tr>
<td></td>
<td>15-day: 2% decrease in wettest 15-day period per year</td>
</tr>
<tr>
<td>Snow Storms</td>
<td>Little change in frequency of snow storms</td>
</tr>
<tr>
<td></td>
<td>12% decrease in the snowiest 3-day period</td>
</tr>
<tr>
<td></td>
<td>Snowier winters; Less snowy transition seasons (spring/autumn)</td>
</tr>
<tr>
<td>Late/Early Freeze</td>
<td>Growing season lengthened by about 7 days</td>
</tr>
<tr>
<td></td>
<td>Earlier last frosts in spring; Later first frosts in autumn</td>
</tr>
<tr>
<td>Tornado, Wind, Hail</td>
<td>Inconsistencies in reporting exceed trend</td>
</tr>
</tbody>
</table>
Over the past century, Missouri’s climate has become increasingly warmer and wetter. Seasonal differences highlight times of the year that have been impacted the most and future projections indicate that many of these trends could continue into the future. Projections in this section originated from the third National Climate Assessment (NCA) and associated sustained activities (Melillo et al. 2014; Frankson et al. 2017; Kunkel et al. 2017). The fourth NCA is currently under development and is expected to be released in 2018.

Temperature
Temperatures have increased slightly across Missouri, but projections indicate that temperatures will increase substantially into the future. The amount of future warming, however, is largely dependent upon increases or decreases in greenhouse gas emissions, and so a range of conditions is possible. Depending on the scenario, a 4-9°F increase in average annual temperature could occur for Kansas City (Walsh et al. 2014). Like current trends, cold waves are expected to become less intense; however, heat waves are expected to become more intense as even modest increases in summertime temperature would lead to more extremes. These trends could have serious implications for communities like Kansas City, as increases in cooling demands could put a strain on utilities and vulnerable populations, like the young, elderly, and the poor.

“Extreme rainfall events and flooding have increased during the last century, and these trends are expected to continue, causing erosion, declining water quality, and negative impacts on transportation, agriculture, human health, and infrastructure.” - Midwest NCA Report, 2014

Precipitation
Missouri is particularly susceptible to flooding as many communities are located along major rivers, such as the Mississippi, Missouri, and White Rivers, and their tributaries. Due to its position in the lower portions of these river basins, precipitation increases anywhere in the upper reaches must be taken into account. Increases in streamflows of upstream tributaries pose a risk of flooding to downstream areas of Missouri, regardless of changes to the state’s precipitation.

Projections indicate seasonal differences in future precipitation across Missouri, with increases projected in the winter and spring. For Kansas City, this could mean a 10-15% increase in precipitation for each of these seasons (Walsh et al. 2014). Because extreme precipitation events are also expected to increase, this could potentially lead to an increase in the frequency and intensity of floods, both in terms of flash flooding and longer-term events. Unfortunately, this would not be a new hazard as Missouri ranked fourth in terms of losses due to flooding from 1955-1997 (Frankson et al. 2016).

Although not yet apparent in the regional and local trends, summer precipitation is expected to decrease across all of Missouri by 2050. For Kansas City, this could be a decrease of up to 5-10% (Walsh et al. 2014). While this decrease may not seem dramatic, in combination with significant increases in summertime temperatures it may cause an increase in the intensity of droughts, which are a recurring feature of Missouri’s climate.
Implications

Hazards originating from extremes in weather and climate conditions impact municipalities in multiple ways, from infrastructure to utilities to human health. While many locations in the Midwest already experience a wide range of weather and climate conditions, this range has increased over time in Kansas City, making the city more prone to weather and climate hazards. Recent and future changes in Kansas City that could have implications for municipal operations include:

Changes to energy needs
Recent
- An increase in winter temperatures coupled with a decrease in the severity of cold waves has led to a decrease in heating demands.
- An increase in temperatures in the spring, summer, and autumn has led to an increase in cooling demands. Warmer minimum temperatures have driven the increased demand in summer.

Future
- A continued increase in temperatures could further decrease energy needs in the winter.
- More intense heat waves in the summer could impact utilities during peak delivery times.

Strains to water resource management
Recent
- An increase in the frequency of single-day heavy rainfall events in the summer has increased the potential for flash flooding.

Future
- Continued increases in single-day heavy rainfall events could increase the potential for more intense and frequent flooding episodes.
- An increase in multi-day (5-day and 15-day) heavy rainfall events could increase the potential for longer-term flooding events.
- Increases in heavy rainfall events could lead to soil erosion as well as decreased water quality.
- Projected decreases in summer precipitation could increase the intensity of droughts, potentially putting strains on the quality and quantity of available water.

Human health impacted by extremes in temperature and precipitation
Recent
- Warmer winters could decrease cold weather-related impacts, while warmer nights in the summer could impact vulnerable populations, potentially increasing the need for cooling shelters.
- A longer frost-free season could signal a longer vector-borne disease season.
- More intense and frequent flooding events can lead to short-term concerns, such as injury and death, and long-term concerns, such as a potential increase in water-borne disease and indoor air quality issues due to mold and mildew (Luber et al. 2014).

Future
- More intense heat waves in the summer could negatively impact vulnerable populations.
- Continued increases in winter temperatures could lead to the overwintering of pests.

Other
Recent
- Declines in spring/autumn snowfall coupled with increases in winter snowfall could impact the timing and frequency of snow removal operations.
Resources

Historical Climate Data and Information

Historical Temperature and Precipitation Data
• Applied Climate Information System: http://scacis.rcc-acis.org/

Historical Drought Information
• Drought Risk Atlas: http://droughtatlas.unl.edu/

Temperature and Precipitation Trends at National, State, and Climate Division scales
• NCEI’s Climate at a Glance: https://www.ncdc.noaa.gov/cag/

Local Trends in Midwest and Great Plains
• Corn Belt Climate Trends (1980-2013): http://www.hprcc.unl.edu/climatetrends.php

Recent and Current Climate Monitoring

Midwest and Great Plains Monthly Climate and Drought Webinar
• To sign up for future webinars: https://www.drought.gov/drought/calendar/webinars
• For archive: http://www.hprcc.unl.edu/webinars.php

Midwest Quarterly and Monthly Climate Summaries
• Quarterly Climate Impacts and Outlook: https://www.drought.gov/drought/resources/reports
• Monthly Climate Overviews: http://mrcc.isws.illinois.edu/cliwatch/watch_highlights.html

Temperature and Precipitation Maps
• HPRCC ACIS Climate Maps: http://www.hprcc.unl.edu/maps.php?map=ACISClimateMaps

Drought Monitoring
• U.S. Drought Monitor: http://droughtmonitor.unl.edu/

Streamflow Conditions
• USGS WaterWatch: http://waterwatch.usgs.gov/index.php

Future Climate Data and Information

National Climate Assessment
• Reports by region and sector: http://nca2014.globalchange.gov/

Climate Change Impacts by State
• EPA: https://www.epa.gov/climate-impacts/climate-change-impacts-state

State Climate Summaries
• NCEI: https://statesummaries.ncics.org/
References

